108 research outputs found

    Bayesian inference for dynamic transcriptional regulation; the Hes1 system as a case study.

    Get PDF
    Motivation: In this study we address the problem of estimating the parameters of regulatory networks and provide the first application of Markov chain Monte Carlo (MCMC) methods to experimental data. As a case study we consider a stochastic model of the Hes1 system expressed in terms of stochastic differential equations (SDEs) to which rigorous likelihood methods of inference can be applied. When fitting continuous-time stochastic models to discretely observed time series the lengths of the sampling intervals are important, and much of our study addresses the problem when the data are sparse. Results: We estimate the parameters of an autoregulatory network providing results both for simulated and real experimental data from the Hes1 system. We develop an estimation algorithm using Markov chain Monte Carlo techniques which are flexible enough to allow for the imputation of latent data on a finer time scale and the presence of prior information about parameters which may be informed from other experiments as well as additional measurement error. Availability: Supplementary information is submitted with the paper. Contact

    Identity-by-descent analysis of a large Tourette’s syndrome pedigree from Costa Rica implicates genes involved in neuronal development and signal transduction:Molecular psychiatry

    Get PDF
    Tourette Syndrome (TS) is a heritable, early-onset neuropsychiatric disorder that typically begins in early childhood. Identifying rare genetic variants that make a significant contribution to risk in affected families may provide important insights into the molecular aetiology of this complex and heterogeneous syndrome. Here we present a whole-genome sequencing (WGS) analysis from the 11-generation pedigree (>500 individuals) of a densely affected Costa Rican family which shares ancestry from six founder pairs. By conducting an identity-by-descent (IBD) analysis using WGS data from 19 individuals from the extended pedigree we have identified putative risk haplotypes that were not seen in controls, and can be linked with four of the six founder pairs. Rare coding and non-coding variants present on the haplotypes and only seen in haplotype carriers show an enrichment in pathways such as regulation of locomotion and signal transduction, suggesting common mechanisms by which the haplotype-specific variants may be contributing to TS-risk in this pedigree. In particular we have identified a rare deleterious missense variation in RAPGEF1 on a chromosome 9 haplotype and two ultra-rare deleterious intronic variants in ERBB4 and IKZF2 on the same chromosome 2 haplotype. All three genes play a role in neurodevelopment. This study, using WGS data in a pedigree-based approach, shows the importance of investigating both coding and non-coding variants to identify genes that may contribute to disease risk. Together, the genes and variants identified on the IBD haplotypes represent biologically relevant targets for investigation in other pedigree and population-based TS data

    Genetic Classification of Populations using Supervised Learning

    Get PDF
    There are many instances in genetics in which we wish to determine whether two candidate populations are distinguishable on the basis of their genetic structure. Examples include populations which are geographically separated, case--control studies and quality control (when participants in a study have been genotyped at different laboratories). This latter application is of particular importance in the era of large scale genome wide association studies, when collections of individuals genotyped at different locations are being merged to provide increased power. The traditional method for detecting structure within a population is some form of exploratory technique such as principal components analysis. Such methods, which do not utilise our prior knowledge of the membership of the candidate populations. are termed \emph{unsupervised}. Supervised methods, on the other hand are able to utilise this prior knowledge when it is available. In this paper we demonstrate that in such cases modern supervised approaches are a more appropriate tool for detecting genetic differences between populations. We apply two such methods, (neural networks and support vector machines) to the classification of three populations (two from Scotland and one from Bulgaria). The sensitivity exhibited by both these methods is considerably higher than that attained by principal components analysis and in fact comfortably exceeds a recently conjectured theoretical limit on the sensitivity of unsupervised methods. In particular, our methods can distinguish between the two Scottish populations, where principal components analysis cannot. We suggest, on the basis of our results that a supervised learning approach should be the method of choice when classifying individuals into pre-defined populations, particularly in quality control for large scale genome wide association studies.Comment: Accepted PLOS On

    Assessing relative resilience potential of coral reefs to inform management

    Get PDF
    International audienceEcological resilience assessments are an important part of resilience-based management (RBM) and can help prioritize and target management actions. Use of such assessments has been limited due to a lack of clear guidance on the assessment process. This study builds on the latest scientific advances in RBM to provide that guidance from a resilience assessment undertaken in the Commonwealth of the Northern Mariana Islands (CNMI). We assessed spatial variation in ecological resilience potential at 78 forereef sites near the populated islands of the CNMI: Saipan, Tinian/Aguijan, and Rota. The assessments are based on measuring indicators of resilience processes and are combined with information on anthropogenic stress and larval connectivity. We find great spatial variation in relative resilience potential with many high resilience sites near Saipan (5 of 7) and low resilience sites near Rota (7 of 9). Criteria were developed to identify priority sites for six types of management actions (e.g., conservation, land-based sources of pollution reduction, and fishery management and enforcement) and 51 of the 78 sites met at least one of the sets of criteria. The connectivity simulations developed indicate that Tinian and Aguijan are each roughly 10 × the larvae source that Rota is and twice as frequent a destination. These results may explain the lower relative resilience potential of Rota reefs and indicates that actions in Saipan and Tinian/Aguijan will be important to maintaining supply of larvae. The process we describe for undertaking resilience assessments can be tailored for use in coral reef areas globally and applied to other ecosystems

    Identifying schizophrenia patients who carry pathogenic genetic copy number variants using standard clinical assessment: retrospective cohort study

    Get PDF
    Background Copy number variants (CNVs) play a significant role in disease pathogenesis in a small subset of individuals with schizophrenia (~2.5%). Chromosomal microarray testing is a first-tier genetic test for many neurodevelopmental disorders. Similar testing could be useful in schizophrenia. Aims To determine whether clinically identifiable phenotypic features could be used to successfully model schizophrenia-associated (SCZ-associated) CNV carrier status in a large schizophrenia cohort. Method Logistic regression and receiver operating characteristic (ROC) curves tested the accuracy of readily identifiable phenotypic features in modelling SCZ-associated CNV status in a discovery data-set of 1215 individuals with psychosis. A replication analysis was undertaken in a second psychosis data-set (n = 479). Results In the discovery cohort, specific learning disorder (OR = 8.12; 95% CI 1.16–34.88, P = 0.012), developmental delay (OR = 5.19; 95% CI 1.58–14.76, P = 0.003) and comorbid neurodevelopmental disorder (OR = 5.87; 95% CI 1.28–19.69, P = 0.009) were significant independent variables in modelling positive carrier status for a SCZ-associated CNV, with an area under the ROC (AUROC) of 74.2% (95% CI 61.9–86.4%). A model constructed from the discovery cohort including developmental delay and comorbid neurodevelopmental disorder variables resulted in an AUROC of 83% (95% CI 52.0–100.0%) for the replication cohort. Conclusions These findings suggest that careful clinical history taking to document specific neurodevelopmental features may be informative in screening for individuals with schizophrenia who are at higher risk of carrying known SCZ-associated CNVs. Identification of genomic disorders in these individuals is likely to have clinical benefits similar to those demonstrated for other neurodevelopmental disorders
    • 

    corecore